mesos marathon

作者: admin 分类: docker 发布时间: 2015-12-16 22:35 ė 6 没有评论

Apache mesos中的基本术语解释
(1) Mesos-master:Mesos master,主要负责管理各个framework和slave,并将slave上的资源分配给各个framework
(2) Mesos-slave:Mesos slave,负责管理本节点上的各个mesos-task,比如:为各个executor分配资源
(3) Framework:计算框架,如:Hadoop,Spark等,通过MesosSchedulerDiver接入Mesos
(4) Executor:执行器,安装到mesos-slave上,用于启动计算框架中的task。
当用户试图添加一种新的计算框架到Mesos中时,需要实现一个Framework scheduler和executor以接入Mesos。
总体架构
Apache Mesos由四个组件组成,分别是Mesos-master,mesos-slave,framework和executor。
Mesos-master是整个系统的核心,负责管理接入mesos的各个framework(由frameworks_manager管理)和slave(由slaves_manager管理),并将slave上的资源按照某种策略分配给framework(由独立插拔模块Allocator管理)。
Mesos-slave负责接收并执行来自mesos-master的命令、管理节点上的mesos-task,并为各个task分配资源。mesos-slave将自己的资源量发送给mesos-master,由mesos-master中的Allocator模块决定将资源分配给哪个framework,当前考虑的资源有CPU和内存两种,也就是说,mesos-slave会将CPU个数和内存量发送给mesos-master,而用户提交作业时,需要指定每个任务需要的CPU个数和内存量,这样,当任务运行时,mesos-slave会将任务放到包含固定资源的linux container中运行,以达到资源隔离的效果。很明显,master存在单点故障问题,为此,mesos采用了zookeeper解决该问题。
Framework是指外部的计算框架,如Hadoop,Mesos等,这些计算框架可通过注册的方式接入mesos,以便mesos进行统一管理和资源分配。Mesos要求可接入的框架必须有一个调度器模块,该调度器负责框架内部的任务调度。当一个framework想要接入mesos时,需要修改自己的调度器,以便向mesos注册,并获取mesos分配给自己的资源, 这样再由自己的调度器将这些资源分配给框架中的任务,也就是说,整个mesos系统采用了双层调度框架:第一层,由mesos将资源分配给框架;第二层,框架自己的调度器将资源分配给自己内部的任务。当前Mesos支持三种语言编写的调度器,分别是C++,java和python,为了向各种调度器提供统一的接入方式,Mesos内部采用C++实现了一个MesosSchedulerDriver(调度器驱动器),framework的调度器可调用该driver中的接口与Mesos-master交互,完成一系列功能(如注册,资源分配等)。
Executor主要用于启动框架内部的task。由于不同的框架,启动task的接口或者方式不同,当一个新的框架要接入mesos时,需要编写一个executor,告诉mesos如何启动该框架中的task。为了向各种框架提供统一的执行器编写方式,Mesos内部采用C++实现了一个MesosExecutorDiver(执行器驱动器),framework可通过该驱动器的相关接口告诉mesos启动task的方法。

architecture3
上图显示了 Mesos 的主要组成部分。 Mesos 由一个 master daemon 来管理 slave daemon 在每个集群节点上的运行, mesos applications ( 也称为 frameworks )在这些 slaves 上运行 tasks。

Master 使用 Resource Offers 实现跨应用细粒度资源共享,如 cpu、内存、磁盘、网络等。 master 根据指定的策略来决定分配多少资源给 framework ,如公平共享策略,或优先级策略。 master 采用热插拔的方式实现了模块,为了以后更好的扩展。

在 Mesos 上运行的 framework 由两部分组成:一个是 scheduler ,通过注册到 master 来获取集群资源。另一个是在 slave 节点上运行的 executor 进程,它可以执行 framework 的 task 。 Master 决定为每个 framework 提供多少资源, framework 的 scheduler 来选择其中提供的资源。当 framework 同意了提供的资源,它通过 master 将 task发送到提供资源的 slaves 上运行。

资源供给的一个例子

下图描述了一个 Framework 如何通过调度来运行一个 Task
architecture-example

事件流程:

Slave1 向 Master 报告,有4个CPU和4 GB内存可用
Master 发送一个 Resource Offer 给 Framework1 来描述 Slave1 有多少可用资源
FrameWork1 中的 FW Scheduler会答复 Master,我有两个 Task 需要运行在 Slave1,一个 Task 需要<2个CPU,1 GB内存="">,另外一个Task需要<1个CPU,2 GB内存="">
最后,Master 发送这些 Tasks 给 Slave1。然后,Slave1还有1个CPU和1 GB内存没有使用,所以分配模块可以把这些资源提供给 Framework2
当 Tasks 完成和有新的空闲资源时,Resource Offer 会不断重复这一个过程。 当 Mesos 提供的廋接口允许其来扩展和允许 frameworks 相对独立的参与进来,一个问题将会出现: 一个 framwork 的限制如何被满足在不被 Mesos 对这些限制所知晓的情况下? 例如, 一个 framework 如何得到数据本地化在不被 Mesos所知晓哪个节点存储着被该 framwork 所需要的数据?Mesos 通过简单的寄予 frameworks 能够拒绝 offers 的能力来回答了这个问题。 一个 framework 将拒绝 不满足其限制要求的 offers 并接受满足其限制要求的 offers. 特殊情况下,我们找到一个简单的策略 delay scheduling, 在该 frameworks 等待 一个限制时间来获取存储输入数据的节点, 并生成接近的优化过得数据点。

mesos 相当于控制资源
marathon 相当于框架 用来启动任务
zookeeper 用于mesos master之间的leader选举和数据同步

总体上看,Mesos是一个master/slave结构,其中,master是非常轻量级的,仅保存了framework(各种计算框架称为framework)和mesos slave的一些状态,而这些状态很容易通过framework和slave重新注册而重构,因而很容易使用了zookeeper解决mesos master的单点故障问题。
Mesos master实际上是一个全局资源调度器,采用某种策略将某个slave上的空闲资源分配给某一个framework,各种framework通过自己的调度器向Mesos master注册,以接入到Mesos中;而Mesos slave主要功能是汇报任务的状态和启动各个framework的executor(比如Hadoop的excutor就是TaskTracker)。

wKiom1ZFUyuwNphBAAJQGw--a3E430
参考:http://www.mesoscn.cn/OverView/Mesos-Architecture.html
http://dongxicheng.org/apache-mesos/meso-architecture/

本文出自 小Q,转载时请注明出处及相应链接。

本文永久链接: http://www.linuxqq.com/archives/1647.html

0
更多
Ɣ回顶部